例1ー1)

(1)ADの長さ

(2)△ABCの面積

をそれぞれ求めよ。

BD=xとおく。

DC=14-x

(1)△ABDで三平方

            AB=BD+AD

             169=x+AD…①

             △ADCで三平方

            AC=DC+AD

             225=(14-x)+AD…②

           ①、②で連立する

           ①AD=169-x

           ②AD=225-(14-x)

           169-x=225-(14-x)

           169-x=225-(196-28x+x

           169-x=225-196+28x-x

              140=28x

               x=5

           ①に代入して、

            AD=169-25

            AD=144 AD>0

             AD=12

(2)△ABC=14×12×1/2=84

例1-2)

(1)ADの長さ

(2)△ABCの面積

をそれぞれ求めよ。

BD=x

DC=11-x

(1)△ABDで

            5=AD+x…①

           △ACDで

            (4√5)=AD+(11-x)…②

         ①②を連立

          ①AD=25-x

          ②AD=80-(11-x)

           AD=80-(121-22x+x

           AD=-x+22x-41

         25-x=-x+22x-41

           22x=66

            x=3

         ①に代入

          5=AD+3

          AD=25-9

          AD=16 AD>0

           AD=4

(2)△ABD=11×4×1/2=22

例2ー1)折り返し

AB=6cm、BC=8cm、DはBCの中点のとき、BEの長さを求めよ。

直角三角形の3辺のうちわからないところをxでおく!

BE=x

AE=ED=6-x

△BEDだけ切り抜きます。

(方程式)

(6-x)=x+4

-12x=-20

x=5/3

BE=5/3cm

例2-2)

AB=9cm、BC=15cmの長方形がある。

CとFが重なるように折り返した。

①CEの長さ

②BEの長さ

をそれぞれ求めよ。

(1)CE

CE=EF=x

AE=15-92 AE>0

AE=12   x=3+(9-x)

FD=3   x=9+81-18x+x

DE=9-x  18x=90

x=5

BE=5+15

BE=250 BE>0

BE=5√10

中3数学へ→